Normal Subgroups of Doubly Transitive Automorphism Groups of Chains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS

An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...

متن کامل

The Automorphism groups of Doubly Transitive Bilinear Dual Hyperovals

This paper has two purposes. We determine the automorphism groups of the 2-transitive, bilinear dual hyperovals over F2 of type D[k], which were constructed in [6] by the author. Secondly, we characterize 2-transitive quotients of the Huybrechts dual hyperoval, compute their automorphism groups and give estimates on the number of such quotients.

متن کامل

Classifying fuzzy normal subgroups of finite groups

In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.

متن کامل

SGDs with doubly transitive automorphism group

Symmetric graph designs, or SGDs, were deened by Gronau et al. as a common generalisation of symmetric BIBDs and orthogonal double covers. This note gives a classiication of SGDs admitting a 2-transitive automorphism group. There are too many for a complete determination, but in some special cases the determination can be completed, such as those which admit a 3-transitive group, and those with...

متن کامل

Line-transitive Automorphism Groups of Linear Spaces

In this paper we prove the following theorem. Let S be a linear space. Assume that S has an automorphism group G which is line-transitive and point-imprimitive with k < 9. Then S is one of the following:(a) A projective plane of order 4 or 7, (a) One of 2 linear spaces with v = 91 and k = 6, (b) One of 467 linear spaces with v = 729 and k = 8. In all cases the full automorphism group Aut(S) is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1985

ISSN: 0002-9947

DOI: 10.2307/2000304